Colin and Coco's

 Daily Maths WorkoutWorkout 6.7
Answers

Properties of Shapes

Shape Workout

Plot the points then find the point to finish the shape.

Plot $(-4,1)(-4,4)(-2,6)$ then make a trapezium e.g($-2,1)$
Possible solutions: x coordinate $=-2, y$ coordinate <6 but not 3
Plot $(-1,3)(1,0)(3,3)$ then make a rhombus $(1,6)$
Plot $(3,-2)(-2,-3)(-3,-2)$ then make a kite $(-2,-1)$

Shape Workout

Use properties of shapes to calculate the missing coordinates.

1. Rectangle: Missing coordinate is $(4,4)$
2. Square: Missing coordinate is $(-4,-1)$
3. Parallelogram: Missing coordinate is $(4,-4)$

You need:
Coordinate cards (on the next page)
Coordinate Challenge Board (on the next page)
A different coloured pencil for each player
To play:
Shuffle the cards and put them face down on the table.
Take turns to turn over two cards.
Use the numbers to make the coordinates of a point.
Plot your point on the grid.

To win:
The winner is the first player to plot three points in a straight line, horizontally or vertically. The three points do not have to be right next to each other.

Coordinate Challenge Board

Colin is making shapes by plotting points on a coordinate grid.
Place digits in the empty boxes to complete the sets of Possible coordinates in several ways.
Solution
Square $\quad(3,3) \quad(\boxed{6}, \boxed{0}) \quad(6,6) \quad(\boxed{9}, \sqrt[3]{ })$
Parallelogram $\quad(5,2) \quad(7,2) \quad(6,5) \quad(8,5)$
Right-Angled
Triangle
$(1,2)$
$(1,4)$
$(5,4)$

Are there any boxes that it is impossible to put a 5 in? Why?

Are there any boxes that could have any of the digits in them?

Now complete all the coordinates together using the digits $0,1,2,3,4,5,6,7,8$ and 9 once each.

Quad Quads are quadrialterals that are only allowed to to have one vertex in each quadrant.

This is a Quad Quad

Many possible
solutions

This is not a Quad Quad

Find sets of coordinates that will make a :

Square
Trapezium

Parallelogram
Rhombus

Kite

1. The vertices of a square have coordinates $(1,1),(1,4),(5,4)$ and (a, b).
Find the values of a and b. $(5,1)$
2. The vertices of a right-angled triangle have coordinates ($2, y$), ($2,-4$) and ($-4,-4$).
Find the value of y. Possible solution: $y=3$
3. Two vertices of a square have coordinates $(-3,4)$ and $(3,4)$. How many different squares can be made by plotting 2 more points?

On this grid
$(-3,-2)$ and $(3,-2)$
or
$(0,7)$ and $(0,1)$
Beyond this grid
$(-3,10)$ and $(3,10)$

4. The vertices of a rectangle $A B C D$ are $A(-2,3), B(-2,2)$,
$C(2,2)$ and $D(2,3)$.
Find the coordinates of a rectangle with one vertex at A but twice as large. Possible solution $(-2,1)(2,1)(2,3)$
5. Find the coordinates of A and B.
$A=(10,-2)$
$B=(-4,4)$

Use the clues to work out Colin's mystery number.

You may want to cross numbers out on the 100 grid as you consider each clue.

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

1) I am even
2) I am not a factor of 30
3) I am not a cube number
4) I am not a multiple of 10
5) My digits are not equal
6) Only one of my digits is prime
7) I am not a square number
8) I am not a multiple of 8
9) The sum of my digits is a prime number 10) The difference in my digits is 7

Colin's mystery number is \square

Create your own 'Who am I?' puzzle

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

Please share your puzzle with Colin @MathsCanDo

