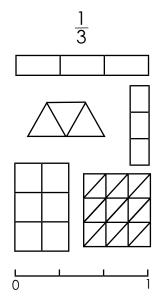


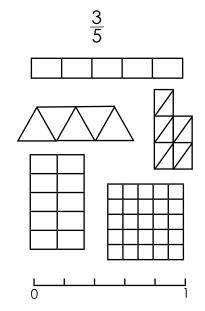


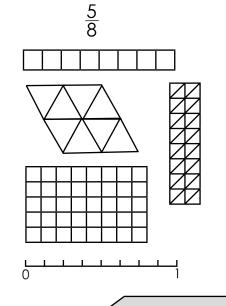
# Colin and Coco's Daily Maths Workout

Workout 3.4

Fractions: Representing and Equivalence





#### Fractions Workout

Workout A

Represent each fraction in different ways using the diagrams and number line.







### Fractions Workout

Workout B

Put the fractions in order from smallest to largest.

$$\frac{1}{5}\,,\frac{4}{5}\,,\frac{2}{5}$$

$$\frac{1}{3}$$
,  $\frac{1}{2}$ ,  $\frac{1}{4}$ 

$$\frac{2}{5},\frac{2}{3},\frac{2}{4}$$

$$\frac{1}{8},\frac{4}{8},\frac{2}{8}$$

$$\frac{1}{4}$$
,  $\frac{1}{5}$ ,  $\frac{1}{3}$ 

$$\frac{3}{5}$$
,  $\frac{3}{4}$ ,  $\frac{3}{8}$ 

$$\frac{3}{4},\frac{1}{4},\frac{2}{4}$$

$$\frac{1}{3}$$
,  $\frac{1}{8}$ ,  $\frac{1}{5}$ 

$$\frac{4}{5}$$
,  $\frac{4}{8}$ ,  $\frac{4}{10}$ 

$$\frac{1}{8}$$
,  $\frac{1}{5}$ ,  $\frac{1}{10}$ 

$$\frac{3}{8}$$
,  $\frac{7}{10}$ ,  $\frac{7}{8}$ 



Workout C

# Fractions Workout

Find the missing numbers.

$$\frac{1}{3} = \frac{1}{6}$$

$$\frac{1}{5} = \frac{\square}{10}$$

$$\frac{1}{2} = \frac{\square}{8}$$

$$\frac{\square}{3} = \frac{8}{12}$$

$$\frac{1}{3} = \frac{\square}{9}$$

$$\frac{1}{5} = \frac{\square}{15}$$

$$\frac{1}{8} = \frac{\square}{16}$$

$$\frac{\Box}{8} = \frac{15}{40}$$

$$\frac{1}{3} = \frac{\square}{15}$$

$$\frac{5}{25} = \frac{\square}{5}$$

$$\frac{1}{4} = \frac{\square}{8}$$

$$\frac{32}{40} = \frac{\Box}{5}$$

$$\frac{}{30} = \frac{1}{3}$$

$$\frac{1}{5} = \frac{10}{10}$$

$$\frac{5}{40} = \frac{1}{8}$$

$$\frac{6}{8} = \frac{\square}{24} = \frac{\square}{4}$$

# Equivalent Fractions Game

You need:

Fraction Cards (at the bottom of this page.) Equivalent Fractions Board (next page.) Pen/pencil/counters

To play:

Shuffle the cards and put them in a deck face down.

Take it in turns to turn over a card.

Calculate an equivalent fraction (You can not choose the fraction itself,) and colour/cover the numerator and denominator anywhere on the board. The numbers do not need to be next to each other.

I have turned over  $\frac{1}{4}$  so I could make  $\frac{2}{8}$  or  $\frac{3}{12}$  or  $\frac{4}{16}$  ...and so on.
I choose to colour a 3 and a 12 on the board.

If you can not go it is the next player's turn. Place the card back into the deck.

To win:

The winner is the first player to colour 5 in a line, next to each other, horizontally, vertically or diagonally.

<u>1</u>

**1 2** 

<u>1</u>3

<u>1</u> 5

<u>1</u>8

<u>1</u>

38

34

<u>2</u> 3

<u>2</u> 5



# Equivalent Fractions Board

| 2  | 3  | 9  | 6  | 4  | 10 | 3  | 2  |
|----|----|----|----|----|----|----|----|
| 20 | 4  | 3  | 12 | 40 | 8  | 6  | 5  |
| 12 | 5  | 24 | 4  | 8  | 3  | 25 | 2  |
| 5  | 16 | 4  | 2  | 9  | 4  | 40 | 4  |
| 2  | 6  | 12 | 30 | 6  | 2  | 12 | 20 |
| 3  | 4  | 8  | 4  | 24 | 8  | 10 | 5  |
| 18 | 15 | 4  | 16 | 2  | 10 | 8  | 15 |
| 2  | 3  | 10 | 6  | 3  | 30 | 15 | 2  |



# Missing Number Workout

Workout E

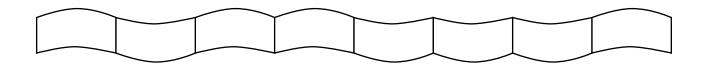
Put digits in the empty boxes to make pairs of equivalent fractions.

Complete each pair in several different ways.

$$\frac{2}{5} = \frac{\square}{1}$$

Are there any boxes that it is impossible to put a 7 in? Why?

Are there any boxes that could have any of the digits in them?

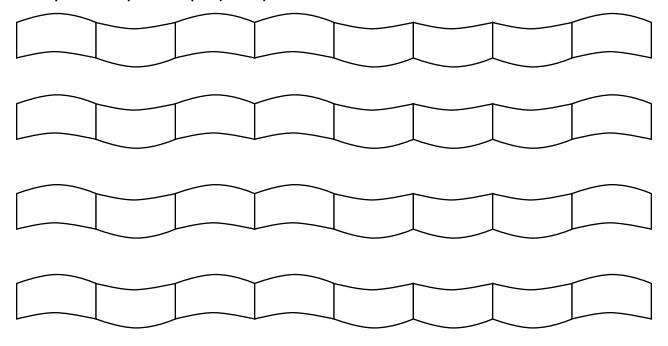

Now complete it using the digits 1, 2, 3, 4, 5, 6, 7 and 8 once each.



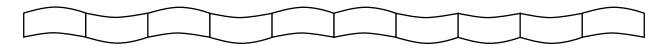
# Scarf Challenge

Workout F

Coco is knitting a scarf for Colin. She wants to draw a plan for the scarf before she starts knitting.




She has three colours and plans to knit a fraction of the scarf in each colour.


Once she starts a colour, she keeps knitting with that colour until it is finished, to save having too many joins.

- $\frac{1}{2}$  of the scarf is going to be brown. (Colin's favourite colour.)
- $\frac{1}{4}$  of the scarf is going to be yellow.
- $\frac{2}{8}$  of the scarf is going to be orange.

The template may be helpful, but you will need more than four scarves!



Investigate the possible designs if  $\frac{1}{2}$  is brown,  $\frac{2}{5}$  is yellow and  $\frac{1}{10}$  is orange.



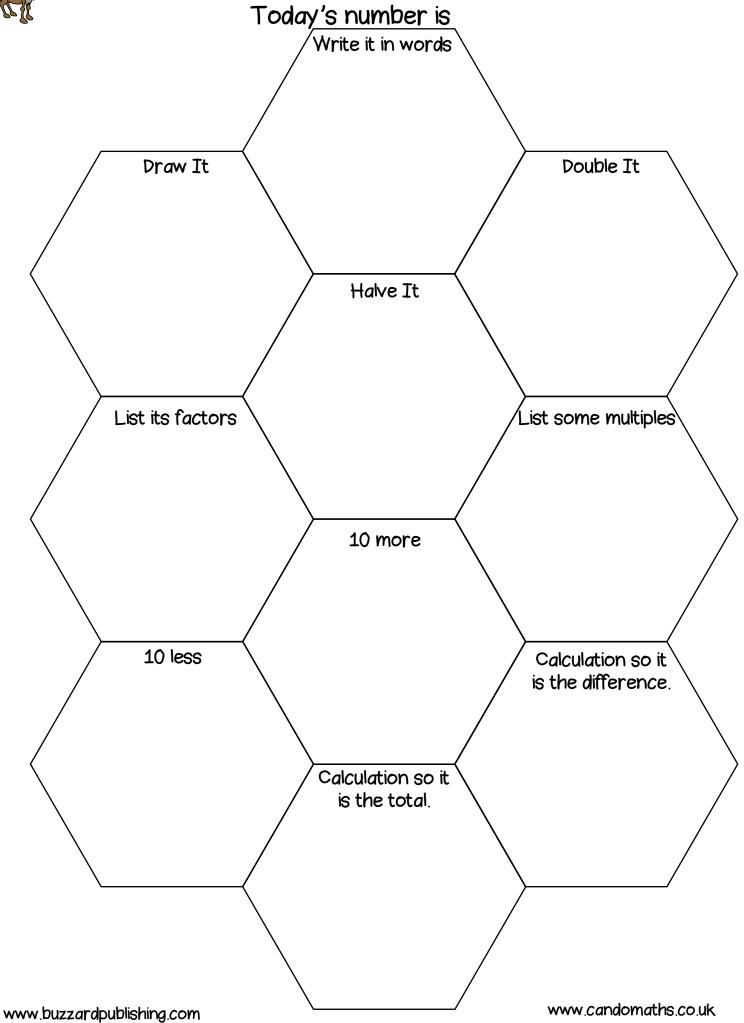
#### Word Problem Workout

Workout G

Coco climbs  $\frac{1}{5}$  of the way up the mountain. Colin climbs  $\frac{1}{8}$  of the way up the mountain. Who has climbed further up the mountain?

Colin eats  $\frac{3}{5}$  of his cake. Coco eats  $\frac{3}{4}$  of her cake. Who has eaten more of their cake?

Colin paves  $\frac{2}{5}$  of his patio with white slabs. He paves  $\frac{3}{10}$  of his patio with grey slabs. Are there more white slabs or grey slabs?


Coco shades  $\frac{2}{5}$  of a shape in red. Colin shades  $\frac{4}{10}$  of the same shape in blue. Which colour is there more of?

Coco is making a fruit salad.  $\frac{5}{8}$  of the salad is apples. Oranges make up  $\frac{1}{8}$  of the salad. Bananas make up  $\frac{2}{8}$  of the salad. Put the fruit in order of quantity in the salad, from most to least.

Create your own problems to compare or order fractions.

# Number of the Day Workout

Workout H

